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Abstract. Methods for modeling species’distributions in nature are typically evaluated empirically with
respect to data from observations of species occurrence and, occasionally, absence at surveyed locations.
Such models are relatively “theory-free.” In contrast, theories for explaining species’distributions draw on
concepts like fitness, niche, and environmental suitability. This paper proposes that environmental suitability
be defined as the conditional probability of occurrence of a species given the state of the environment at a
location. Any quantity that is proportional to this probability is a measure of relative suitability and the
support of this probability is the niche. This formulation suggests new methods for presence-background
modeling of species distributions that unify statistical methodology with the conceptual framework of
niche theory. One method, the plug-and-play approach, is introduced for the first time. Variations on the
plug-and-play approach were studied with respect to their numerical performance on 106 species from an
exhaustively sampled presence–absence survey of vegetation in the Canton of Vaud, Switzerland. Addi-
tionally, we looked at the robustness of these methods to the presence of irrelevant information and sample
size. Although irrelevant variables eroded the predictive performance of all methods, these methods were
found to be both numerically and statistically robust.
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INTRODUCTION

How the occurrence of a species in nature
depends on the state of its environment is one of
the most fundamental problems in ecology. Con-
ceptual frameworks for answering this question
introduce such ideas as fitness (Fretwell and
Lucas 1969, Hirzel and Le Lay 2008, Peterson
et al. 2011), niche (Grinnell 1917, Peterson et al.
2011), and environmental suitability (Engler
et al. 2004, Hirzel and Le Lay 2008, VanDerWal
et al. 2009, Franklin 2010). Problems with opera-
tionalizing these concepts include vagueness
about their meaning (Peters 1976, Hurlbert 1981,
Orr 2009), failure of real systems to meet
assumptions such as distributional equilibrium

(Elith et al. 2010) and lack of source–sink dynamics
(Pulliam 2000), and data problems such as the
commonness of presence-only data (Brotons et al.
2004, Pearce and Boyce 2006, Ward et al. 2009).
This paper seeks to define some of these con-

cepts in a theoretically unifying and computation-
ally operational way. The proposed definitions
lend themselves to a new method, which we
refer to as the plug-and-play approach to modeling
environmental suitability. The plug-and-play
approach is very flexible. For instance, it allows
that data might come from different places at
different times. Further, plug-and-play methods
for estimating environmental suitability also
yield an approach to ecological niche modeling.
We study several instances and show that the
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performance of the plug-and-play approach can
be comparable to MaxEnt, a leading method for
species distribution modeling (Phillips et al.
2004, Elith and Leathwick 2009, Elith et al. 2011),
and superior to a recently proposed density ratio
estimator (Kanamori et al. 2009, Sugiyama et al.
2013). Finally, when used in a particular way
(i.e., using the regularized Gaussian estimator as
its base learner), the plug-and-play method can
be used for variable identification and fitting of ro-
bust models even in the presence of few records
and irrelevant variables.

Environmental suitability and the ecological niche
The state of the environment at a location i

may be represented by a vector of measurements
zi = [ai, bi, ci, . . .] where a is rainfall, b is tempera-
ture, c is vegetation, etc. We assume that zi is con-
stant through time. The environmental distribution
is the joint density of environments in nature,
denoted f(z) (notation follows Elith et al. 2011).
The environmental distribution of species s or occur-
rence distribution is the joint density of environ-
ments in which s is found, denoted f1(z), distinct
from its range and niche (Drake 2015). The sup-
port of f1, that is, the values of z at which f1 > 0,
is the realized niche. The boundary of the sup-
port of f1 is denoted by hF. Sometimes one is
interested in the conditional probability that a
species occurs at a location given the environ-
ment there, P(y = 1|z) (Keating and Cherry 2008,
Ward et al. 2009, Franklin 2010, Elith et al. 2011,
Royle et al. 2012, Hastie and Fithian 2013). We
call this conditional probability the suitability of
environment z, S(z), for species s. By Bayes’ rule,

SðzÞ ¼ Pðy ¼ 1jzÞ ¼ f1ðzÞPðy ¼ 1Þ
f ðzÞ (1)

where P(y = 1) is the species prevalence. Since
prevalence is a proportionality coefficient, we
will sometimes wish to ignore it, in which case
we have relative suitability

SRðzÞ ¼ f1ðzÞ
f ðzÞ / SðzÞ. (2)

Typically, prevalence will be unknown,
although (because it is a single quantity) it might
possibly be estimated through independent sur-
veys with less effort than is required to estimate
the component densities f1(z) or f(z) (Phillips et al.

2009). Assuming non-extinction, P(y = 1) > 0,
SR(z) > 0 if and only if S(z) > 0. That is, the sup-
port of S and SR is identical. The fundamental
niche, N, is defined as the set of all environments in
which the species can persist in the absence of continu-
ous immigration from other populations. More com-
pletely, the fundamental niche, N, is the set of all
environments z such that there exists a popula-
tion size n at which the probability of persisting
at a location with environment z and in the
absence of immigration over a large time horizon
T ≫ 0 exceeds some threshold h, possibly close to
one, in which case there is a non-zero probability
that species s will be found in z (S(z) > 0), further
implying SR(z) > 0. Typically, this persistence
condition will obtain when there is population
size n at which average absolute individual fit-
ness exceeds one. This is a cumbersome defini-
tion, but it points to a way that such notorious
problems as source–sink dynamics (Pulliam
2000), Allee effects (Holt 2009), stochastic extinc-
tion (Hanski 1989), and niche conservatism
(Wiens et al. 2010) may be conceptually incorpo-
rated and quantitatively addressed, rather than
having them swept away by unrealistic model
assumptions. Formally, N = {z:S(z) > 0}. The
boundary of this set is designated hN.
By providing definitions for environmental suit-

ability and niche and relating these to observable
quantities in nature (e.g., the frequency of occur-
rence of a species), this framework allows us to
formulate and answer some fundamental ecolog-
ical questions, including:

1. Is location i more or less suitable for species
s than location j (for any choice of i and j)?

2. What is the dimension of the niche of
species s?

3. What are the environmental variables that
comprise the niche of species s or influence
its distribution?

4. How is the potential distribution of species s
influenced by a given variable x?

5. What are the boundaries of the niche of spe-
cies s? (What are its environmental tolerances?)

6. Is the environmental distribution of species
s set by its niche (its tolerances) or by the set
of the environments realized in nature?

7. How will the environmental distribution of
species s change when the distribution of
environments in nature changes?
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8. How will the spatial distribution of species s
change as the distribution of environments
in nature changes?

The framework can also be used to empirically
address questions in community ecology:

1. What is the niche similarity of species s1 and
s2?

2. Do communities S1 ¼ fs1; s2; s3; . . .sng and
S2 ¼ fsnþ1; snþ2; snþ3; . . .snþmg exhibit more
within-community niche variation or
between-community niche variation?

3. What is the saturation or fraction of species
in the species pool that could persist in z?

An estimator for environmental suitability
In this section, we propose that this conceptual

framework lends itself to modeling, that is build-
ing numerical or computer-learned models of
environmental suitability or species’ niches from
records of species occurrence in nature. Here is
the core of the idea. First, many applications do
not require an estimate of absolute environmen-
tal suitability, but (for instance) only a rank
ordering. In such cases, relative suitability is ade-
quate. Particularly, we shall argue below that
niche identification, which is what we call the pro-
cess of building a model of hN, only requires
information about relative suitability. The plug-
and-play approach to modeling relative environ-
mental suitability proposes that the ratio of two
estimates, df1ðzÞ and dfðzÞ, be used as an estimator
of SR:

cSR ¼ df1ðzÞ= dfðzÞ. (3)

Because f1(z) and f(z) are just probability densi-
ties, they can be estimated using any of a number
of techniques for probability density estimation,
such as kernel density estimation or Parzen’s
window estimator (Wand and Jones 1995). Alter-
natively, one might substitute a parametric
expression, which is basically what is done by
MaxEnt, a maximum entropy algorithm com-
monly used for species distribution modeling
(Phillips et al. 2004). Specifically, the MaxEnt
algorithm for species distribution modeling stip-
ulates that SR = ea+bh(z), where a is a normalizing
constant chosen so that f1(z) integrates to one, b
is a vector of fit coefficients, and h(z) are

transformations of the covariates referred to as
features. (This function h is different from hF and
hN as defined above, but used here for consis-
tency with Elith et al. 2011). Thus, MaxEnt is a
special case of environmental suitability model-
ing, but does not adopt the plug-and-play
approach, which allows for the substitution of
alternatives for f1 and f, including nonparametric
options, as may be suggested by theory (either
statistical theory or biological theory), the objec-
tives of a study, or the properties of a data set
(such as sample size).
This approach can be extended to the problem

of ecological niche identification. For a given esti-
mate of SR, the estimated boundary of the real-
ized niche is just chR ¼ fz : dSRðzÞ ¼ εg), where
ε > 0 is a small threshold parameter. However, Drake
(2015) argued that if a species is rarely found in
unsuitable habitats and the environmental distribution
is “broad” with respect to the species’ niche (that is,
that the range of f contains the extreme environments
in N), then hF � hN (Drake 2015). Substituting chN
for chF, we have an estimator for the boundary of the
fundamental niche, that is, chN ¼ fz : dSRðzÞ ¼ εg.
An alternative to the estimator in Eq. 3 is to

estimate the ratio directly, that is,

cSR ¼
df1ðzÞ
f ðzÞ

� �
. (4)

This problem has been addressed generically
by Sugiyama et al. (2013) and specifically by
Kanamori et al. (2009) in the context of covariate
shift adaptation (adapting statistical analyses to
changing distributions of independent variables)
and Kanamori et al. (2009) and Hido et al. (2011)
in the context of outlier detection. The technical
similarity between outlier detection and ecological
niche modeling has been noted before and used
to motivate presence-only models for ecological
niche modeling (Drake et al. 2006, Drake and
Bossenbroek 2009, Drake 2015). Here, the analogy
is used to motivate a presence-background
approach. For this purpose, Kanamori et al.
(2009) introduce unconstrained least-squares
importance fitting (uLSIF), which they show to be
superior to a variety of alternatives when applied
to a simulated classification task. We therefore
used uLSIF as a direct density ratio estimator for
comparison with the plug-and-play estimator.
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METHODS

Plug-and-play with simple component densities
Implementing the plug-and-play approach

requires estimating the component densities f
and f1. Candidate estimators for the component
density functions include parametric multivari-
ate density estimators (Kotz et al. 2000), robust
versions of these (which may be important when
data are not normally distributed or contain
extreme examples; Huber and Ronchetti 2009),
sparse estimators that reduce variance through
“regularization” (which may be important when
fitting to small samples from high-dimensional
spaces; Sch€afer et al. 2015), and nonparametric
methods (Wand and Jones 1995).

To compare among these classes, we studied
the performance of relative suitability models
comprised of three kinds of Gaussian density esti-
mates: (1) ordinary multivariate Gaussian densi-
ties, (2) robustly estimated Gaussian densities, (3)
densities estimated using a shrinkage estimator
proposed by Sch€afer and Strimmer (Sch€afer et al.
2015) in which the pairwise correlation coeffi-
cients are scaled by a shrinkage intensity parame-
ter (k = min (1, max (0, 1 – k�)), where k� is the
analytic optimal regularization parameter of
Ledoit and Wolf (2003). For comparison, we also
studied the nonparametric kernel density estima-
tor of Li and Racine (2003), which would be
expected to be superior in cases where one or both
of the component densities f and f1 are strongly
non-normal, for instance if they are multi-modal
or highly skewed.

Plug-and-play with ensemble component densities
The plug-and-play approach is not limited to

such simple component densities as elaborated
in the previous section, but can be applied to
basically any approach to probability density
estimation that can be numerically evaluated.
Recently, ensemble methods have been shown in
many areas of statistical application to provide
robust probabilistic models that exhibit both low
variance and low bias. For instance, random for-
ests are frequently used in classification and
regression problems (Breiman 2001). For applica-
tions requiring species distribution modeling, the
gradient boosting machine is popular (Elith et al.
2008, Elith and Leathwick 2009). To be effective,
ensemble models must exhibit improvement

compared to a single model. Typically this is
achieved by “voting” the predictions of a large
number of minimally biased (underfit) models
(Drake 2014). Ensembles of highly tuned models
may even erode performance (Mainali et al.
2015). Thus, it is important when constructing
ensemble learners to optimize the entire ensem-
ble, not the base models.
Here, we explore how bootstrap aggregation or

bagging can be used to improve the estimate of f
or f1 by reducing its variance and thereby
improve the performance of the plug-and-play
estimator. Bagging is performed by constructing
bootstrap samples (with replacement) from a
given data set, fitting a model to each, and then
reporting the average prediction of the ensemble
of models (Breiman 1996). Bagging has been
found to be a very robust approach to ensemble
modeling. Typically, it will be the case that there
are many more records of environmental back-
ground than species occurrence, so the estimate
of f will be more precise than that of f1 (Phillips
et al. 2004). Motivated by this observation, we
first propose only to bootstrap the estimation of
the occurrence distribution in the numerator (f1),
yielding a method we call NumBag. In the imple-
mentation studied here, a kernel density estimate
was obtained for each of v = 100 bootstrap sam-
ples from the occurrence distribution and aver-
aged before dividing by the kernel density
estimate of the background points. Alternatively,
we use bagged estimators for both f1 and f, a pro-
cedure we call DoubleBag. Since the estimated
density bf may depend on a very large number of
background points, DoubleBag is expected to be
much more computationally costly than Num-
Bag. Therefore, it is of interest to determine the
performance of NumBag relative to DoubleBag
as well as the performance of both in absolute
terms. NumBag and DoubleBag are special cases
of the plug-and-play idea that offer potentially
greater performance than the simple estimators
described above, although at a cost of increased
computation time.

Density ratio estimation
In contrast to plug-and-play, the uLSIF algo-

rithm estimates the relative suitability quotient
directly. Direct estimation might be desirable if,
for instance, estimation of the component densi-
ties is more difficult than estimation of the ratio or
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if estimation errors in the component densities are
compounded when the ratio is taken. Sugiyama
et al. (2013) discuss density ratio estimation in
general and the uLSIF estimator in particular. One
advantage of uLSIF is that it is possible to analyti-
cally compute the leave-one-out cross-validation
score for a given set of model parameters, greatly
decreasing the time needed for model tuning in
comparison with numerical cross-validation.
MaxEnt (Phillips et al. 2004) may also be viewed
as a density ratio estimator and is probably the
most popular approach to species distribution
modeling in general.

Presence-only methods
Finally, these methods were compared to two

recently introduced presence-only modeling
methods, LOBAG-OC (Drake 2014) and range
bagging (Drake 2015). In many cases, presence-
only algorithms perform as well and in some
cases perform better than related presence–ab-
sence algorithms (Maher et al. 2014). Briefly,
LOBAG-OC applies bootstrap aggregation to
low bias (weakly regularized) one-class support
vector machines and votes the result. LOBAG-
OC, therefore, follows Vapnik’s principle (Vap-
nik 1998) in that it seeks the set of covariate
values for which the probability density is non-
zero (the support), rather than attempting to
estimate the full probability density (Drake et al.
2006). Range bagging similarly votes a number
of base learners trained on bootstrap samples of
presence points. In this case, the base learner is
the convex hull of a reduced number of environ-
mental covariates randomly selected for each
bootstrap sample. The current analysis provides,
therefore, not only a comparison of the plug-
and-play method with other presence-
background estimators, but is also the first
comparison of these two presence-only methods
themselves.

Computation
Statistical fitting is straightforward. For this

illustration, all fitting was performed in the sta-
tistical programming environment R (R Core
Team 2017). In the case of the ordinary Gaussian
density, the covariance was estimated from the
unbiased sample covariance using the R func-
tion cov (R Core Team 2017). The robust version
was estimated using the minimum covariance

determinant (Rousseeuw and Van Driessen
1999) (function covRob in the robust package,
Wang et al. 2014).The regularized version was
estimated using a regularized density estimator
(function cov.shrink in the corpcor package,
Sch€afer et al. 2015). Since this estimator trun-
cates the fit distribution to the first two
moments, we refer to this as a “regularized
Gaussian” estimator. The kernel density esti-
mates (KDE) were using function npudens in
package np (Hayfield and Racine 2008). Band-
width of this estimator was selected automati-
cally using the analytic rule of thumb of Li and
Racine (2003). Preliminary experiments sug-
gested that computationally intensive band-
width selection procedures like cross-validation
could improve performance, as measured by the
area under the receiver-operator curve (AUC),
by an average of only about 0.01 at a cost of
~6000-fold increase in computing time. MaxEnt
models were fit using the function maxent at the
default settings in the R package dismo (Hij-
mans 2012). This function makes use of the java
program of Phillips et al. (2004). Density ratio
estimates obtained via uLSIF were computed
using the R code of Kanamori et al. (2009). Code
and data to reproduce analysis reported in this
paper are available in Data S1 and on the Dryad
Data Repository at: https://doi.org/doi:10.5061/
dryad.g5p7d1c.

Case study: Ecological niches of sub-alpine
vegetation
Drake et al. (2006) studied the performance of

support vector machines as niche models using
data on 106 plant species in 550 8 9 8 m plots in
the Swiss Alps between 400 and 3200 m in eleva-
tion. Observed species prevalence (i.e., fraction
of sampling plots in which a species was found),
ranged from 1.1% to 35.2%. As the above-ground
species in these sampling plots were exhaustively
enumerated, these data provide a rare opportu-
nity with known absences to benchmark the per-
formance of alternative modeling approaches.
Additionally, these data have been studied by
Maher et al. (2014), who established that pres-
ence-only methods could perform comparably to
presence–absence methods, and Drake (2014) in
an evaluation of the LOBAG-OC algorithm.
Together, these papers provide a benchmark
against which to compare the performance of the
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plug-and-play approach to modeling environ-
mental suitability. Locations were randomly
assigned to either training (80%) or testing (20%)
subsets. All predictor data were rescaled by sub-
tracting the mean and dividing by standard devi-
ation of samples in the training set. A model was
fit for each species using the plug-and-play esti-
mator where bf1 was obtained from the compo-
nent density fit only to occurrence records in the
training set and bf was fit to all records in the
training set. Model performance was evaluated
by predicting the relative suitability for each
record in the test data set and computing AUC,
the area under the receiver operator characteris-
tic, which is a measure of a model’s discrimina-
tive ability (Phillips and Elith 2010). Models were
tuned using 10-fold cross-validation on the train-
ing set with mean AUC calculated for each
model on each species across the 10-folds. After
fitting, tuned models were evaluated on the test
data set. To investigate calibration and the
propensity of these models to be overfit by cross-
validation, mean AUCs from cross-validation
were compared to the test AUC with Spearman
rank-order correlation.

Effect of irrelevant variables
As the volume of automatically recorded and

remotely sensed environmental data accelerates,
an increasing problem for modeling environmen-
tal suitability or ecological niche identification is
the determination of relevant variables and opti-
mizing performance in the presence of irrelevant
information. Intuitively, one expects model perfor-
mance to decline with the number of irrelevant
variables as the learning algorithm has to sift a
smaller and smaller fraction of true correlates
from among the many possibilities. Additionally,
the number of parameters sharing the available
degrees of freedom increases with the number of
irrelevant variables, diminishing the amount of
information available to estimate each and even-
tually resulting in ill-posedness for those methods
lacking a regularization scheme to solve this prob-
lem. On the other hand, it has recently been
shown that, amazingly, in some cases pattern
recognition is actually improved by the presence
of irrelevant variables (Helmbold and Long 2012).

We studied the performance of plug-and-play,
LOBAG, range bagging, and MaxEnt methods in
the presence of irrelevant variables by simulating

1, 2, 4, 8, 16, or 32 normally distributed random
variates with mean zero and unit variance and
combining these with the 10 genuine variables
prior to model fitting. As before, model perfor-
mance was evaluated by calculating AUC on the
withheld test data. Results were summarized by
inspecting the erosion of performance (decline in
AUC) with respect to the number of irrelevant
variables, a measure of statistical robustness, and
by tabulating the number of models that con-
verged, a measure of numerical robustness.

Learning rate analysis
Finally, we studied the effect of sample size on

model performance. An important property of
any statistical model is the way in which its per-
formance changes with the number of instances
available to learn from, the learning rate. This
problem is particularly acute in species distribu-
tion modeling, where a species may be known
from only a small number of unique localities. To
investigate the learning rate of the algorithms
studied here, we identified the eight plant species
with the greatest number of occurrence records
in the training data set (Geranium sylvaticum,
Anthyllis vulneraria, Polygonum viviparum, Achillea
millefolium, Lathyrus pratensis, Astrantia major,
Plantago media, and Pimpinella major). Training
points were randomly assigned to 10 cross-vali-
dation folds. Within folds, each method was
trained on randomly selected subsets of the data
ranging in size from n = 2 to the total number of
available presence points in the smallest set of
training folds. Each of these models (m2, m3,. . .,
mn) was then applied to the points in the test
fold, and an AUC score for each was calculated
as above. These results were visualized by plot-
ting the mean test AUC for each learning method
as a function of the training set size.

RESULTS

Using the classical Gaussian for both compo-
nent distributions, the plug-and-play method
performed moderately well when it could be fit
(mean AUC: 0.761), which was approximately
85% of cases (Fig. 1). Models using the robust
Gaussian for both components typically yielded
a poorer fit (mean AUC: 0.717) and could be fit
in a similar fraction of cases (83%; Fig. 1),
whereas models using the regularized Gaussian
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routinely performed very well (mean AUC:
0.829) and could always be fit. The model using
KDE for the components was similarly robust in
the sense that a reasonable model could always
be obtained. Initially, we thought this improve-
ment might come at considerable cost in terms of
computational complexity to allow for empiri-
cally optimizing bandwidth parameters, but ulti-
mately we found the model could be estimated
using the analytic rule of thumb of Li and Racine
(2003) with very little loss of performance (mean
AUC: 0.840). The ensemble approaches NumBag
and DoubleBag were among the best performing
methods we studied, with high average AUC

values (0.836 and 0.837, respectively) and the
large majority of models able to be fit (98% and
97%). LOBAG-OC (mean AUC: 0.756, ~93% fit),
range bagging (mean AUC: 0.777), and uLSIF
(mean AUC: 0.789) all performed less well. Thus,
both the plug-and-play method (when using
either KDE or regularized Gaussian component
distributions) and the ensemble approaches
NumBag and DoubleBag were found to perform
comparably to MaxEnt (mean AUC: 0.841; Fig. 1)
and better than two other methods we have
recently introduced.
To assess the tunability of each method and

vulnerability to overfitting, we compared AUC
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Fig. 1. Performance of six plug-and-play species distribution models compared with two presence-only species
distribution models (LOBAG-OC and RangeBag), MaxEnt, and a density ratio estimator (uLSIF). The plug-and-
play methods were classical multivariate Gaussian densities (Gauss), robust Gaussian (Rob. Gauss), regularized
Gaussian (Reg. Gauss), and kernel density estimator (KDE) applied to both f and f1; numerator bagged plug-and-
play (NumBag); and double bagged plug-and-play (DoubleBag). Range in AUC was smallest for the regularized
Gaussian, KDE, NumBag, and DoubleBag methods (top panel). Methods with the highest average AUC were the
regularized Gaussian, KDE, NumBag, and DoubleBag plug-and-play approaches and MaxEnt (bottom panel).
The classical Gaussian and robust Gaussian plug-and-play methods and presence-only methods LOBAG-OC
and RangeBag performed considerably more poorly; the density ratio estimate obtained using uLSIF was inter-
mediate. Error bars are mean � standard error. Both the classical Gaussian and robust Gaussian were unable to
fit all models due to numerical instability or ill-posedness (89 and 87 out of 106 fit, respectively).
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Fig. 2. Mean performance (AUC) across 10 cross-validation folds is compared to performance (AUC) of each

 ❖ www.esajournals.org 8 September 2018 ❖ Volume 9(9) ❖ Article e02373

DRAKE AND RICHARDS



in the cross-validation folds with the AUC calcu-
lated on the test data. An overfit model will have
higher AUC on training data than on test data.
Additionally, the correlation between the mean
AUC in cross-validation folds and test AUC indi-
cates the extent to which the observed AUC in
training is predictive of the AUC that can be
expected with respect to unseen examples. In this
study, all cross-validation AUC values were sig-
nificantly (P < 0.01) and positively correlated
with test values (Fig. 2). The strongest correla-
tions were shown by the plug-and-play method
with classical Gaussian components (q = 0.646),
DoubleBag (q = 0.559), and uLSIF (q = 0.538)
algorithms, suggesting that measured perfor-
mance will be most indicative of future perfor-
mance in novel analyses performed with these
three models.

Performance of the studied methods varied
greatly in the presence of irrelevant variables
(Fig. 3). The plug-and-play approach with KDE
and regularized Gaussian component densities,
NumBag, DoubleBag, and MaxEnt models clus-
tered together as the best performing overall
(Fig. 3). Specifically, although performance
declined as the number of irrelevant variables
increased, it declined very slowly so that the
reduction in AUC was only about 6% in the pres-
ence of 32 irrelevant variables, at which point ran-
dom variables outnumbered real variables by
more than three to one. Thus, in the sense that
introducing irrelevant information had little effect
on the final output, these three models were all
statistically very robust. In contrast, the perfor-
mance of the plug-and-play approach with classi-
cal Gaussian and robust Gaussian component
densities, range bagging, LOBAG-OC, and density
ratio estimation with uLSIF declined much more
rapidly (Fig. 3). Additionally, although the plug-
and-play approach with KDE and regularized
Gaussian components and MaxEnt models con-
verged in all cases, the plug-and-play approach

with classical Gaussian and robust Gaussian com-
ponents increasingly failed to converge as the
dimension of the environmental data increased.
Analyses of learning rate showed similar per-

formance for some methods across the eight
most abundant species in our data and variable
performance for others (Fig. 4). Additionally, the
niches of some species (e.g., Plantago media)
seemed inherently more learnable. The group of
high-performing methods (i.e., DoubleBag,
NumBag, KDE, regularized Gaussian, and Max-
Ent) tended to perform relatively poorly with
fewer than around 15 training points, but
improved quickly approaching their maximum
performance at around 20 or 30 observations. At
the other end of the spectrum (i.e., with around
100 observations in Achillea millefolium and
Pl. media), MaxEnt tended to perform slightly
better than DoubleBag and other high-perform-
ing methods, although this was not always true
(compare Pimpinella major). Interestingly, the per-
formance of the density ratio estimated with
uLSIF varied substantially across species. In
some cases (e.g., Pi. major and Pl. media) uLSIF
performed consistently less well than the group
of highest fit models, while in other cases (e.g.,
Geranium sylvaticum and Lathyrun pratensis)
uLSIF overtook the performance of DoubleBag
with increasing numbers of training points. The
robust Gaussian method was a clear outlier over-
all, routinely exhibiting lower performance at all
sample sizes.

DISCUSSION

This study proposes numerical definitions for
the ecological concepts of environmental suitabil-
ity, relative suitability, and niche that we believe
are consistent with common usage. A virtue of
these definitions is the potential to unify ecologi-
cal niche theory with dynamical theory, as
alluded to by Peterson et al. (2011), particularly

model on the testing subset. A one-to-one line is plotted on each graph, and 95% confidence intervals for mean
cross-validation AUCs are shown. Points falling on the one-to-one line are models where the estimated perfor-
mance in cross-validation was equal to performance on the test set. Points below the line are overfit (higher per-
formance in cross-validation than with withheld data) while points above the line are underfit (higher
performance in withheld data than in cross-validation). AUC values were significantly and positively correlated
for all models (Spearman’s q shown).

(Fig. 2. Continued)
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where those theories make probabilistic state-
ments about occurrence within a landscape (i.e.,
metapopulation theories) or persistence over
long times (i.e., stochastic population theory). A
practically useful feature of this framework is
that it suggests a new approach—the plug-and-
play method—for estimating relative suitability.

Performance of six versions of the plug-and-
play method was studied with respect to 106
plant species that had been exhaustively sampled
for species presence and absence. Mean AUC of
these models ranged from 0.717 to 0.841. Except
for the plug-and-play approach with classical and

robust Gaussian components, the current models
are all superior to those of Drake et al. (2006),
which used support vector machines in three dif-
ferent ways and achieved average AUC of <0.8 in
all cases. On the other hand, Drake et al. (2006) fit
models only to data on species occurrences (i.e.,
presence-only models) whereas plug-and-play is
a presence-background approach. Similarly,
Maher et al. (2014) studied nine presence-only
and seven presence–absence niche modeling
methods using these data. All 16 of those methods
returned average AUC of <0.8, with the exception
of a k-nearest neighbor method configured to fit
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Fig. 3. Performance of six plug-and-play species distribution models compared with two presence-only species
distribution models (LOBAG-OC and RangeBag), MaxEnt, and a density ratio estimator in the presence of irrele-
vant variables. Performance was degraded the least by irrelevant variables in the regularized Gaussian, kernel den-
sity estimates (KDE), DoubleBag, NumBag, and MaxEnt models (top panel; error bars are mean � standard error).
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both presence and absence data where the aver-
age AUC was 0.804. Thus, the presence-back-
ground approaches studied here (with the
exception of classical and robust Gaussian compo-
nents) are superior to all the presence-only and
presence–absence methods studied by Maher
et al. (2014) with AUC improvements on the
order of 4–6%. One conclusion from this study
together with earlier analyses (Drake et al. 2006,
Drake 2014, Maher et al. 2014) is that there may
yet be scope for improvement, but also that many
methods may be contrived to yield very similar
results. Particularly, a number of methods per-
form similarly to MaxEnt, which is currently a
widely preferred method. Ultimately, if ecologists
wish to choose a method on the basis of empirical
superiority (compare Brotons et al. 2004, Elith
et al. 2006), many more data sets will be needed.

One of the key assumptions of the approaches
introduced here is that environments are constant
and species distributions do not primarily reflect
past environmental conditions. Modeling envi-
ronmental suitability in the presence of dynamic
environments is an important problem for further
research. Extensions of the current approach to
dynamic environments are easy to imagine. Sup-
pose we supplement our spatial indexing (i) with
a temporal indexing (t). Occurrence records also
must be indexed by time. Recognizing that a loca-
tion’s past environment affects its present species
composition, one would model the probability of
occurrence as a function of both present and past
environments, perhaps downweighting the effect
of conditions in the distant past or considering
only those environmental conditions within a
window of time. Now, the probability of occur-
rence is given by a function of both present and
past environments or a weighted mixture of den-
sities. The definition of environmental suitability
with respect to the present time is retained, how-
ever. A simpler way to implement this idea is to
introduce time-lagged covariates into the feature
set, that is, zi,t = [ai,(t), ai,(t � 1), ai,(t � 2), . . .bi,(t), bi,

(t � 1), bi,(t � 2), . . .]. Joint densities f and f1 could
be fit as done here and present suitability
returned either by marginalizing over historical
environments or by evaluating the full model (in-
cluding time-lagged variables) for all locations’
actual environmental histories. As the current
study of irrelevant variables shows, if the lagged
environmental variables are not grossly irrelevant
or too numerous, the effects they have on a suit-
ably chosen model (i.e., plug-and-play approach
with KDE or regularized Gaussian components or
MaxEnt) are minimal, and we may expect the
resulting model to be fairly robust.
In principle, it might seem that this approach

also makes the assumption that the species distri-
bution is at equilibrium (since it is assumed that f
and f1 are stationary). Applied naively to all the
data that one might acquire, this is true. However,
because the problem does not explicitly include
spatial dependence, the modeler can easily restrict
the data to a subset prior to estimating f and f1.
Thus, for instance, the set of records for estimat-
ing f and f1 could be just the locations that were
searched for the species. (In fact, this is what has
been done in any study where the background
data reflect only study locations, including the
current study.) Alternatively, the data could be
selected to be drawn only from regions consid-
ered to be “accessible” to the species (Peterson
et al. 2011). This is very similar to the problem of
study extent addressed by Barve et al. (2011).
This paper advocates estimating relative suit-

ability or niche boundary rather than absolute
suitability in applications where species’ preva-
lence is irrelevant (for instance to rank sites by
their value to species conservation). The plug-
and-play approach nevertheless solves an unnec-
essary intermediate problem: estimating the den-
sities f and f1 (or, in the case of sample selection
bias, f2). It would seem that estimating the ratio
f1/f directly might be a more efficient approach,
as has been advocated by Sugiyama et al. (2013).
In comparative studies, Sugiyama et al. found

estimator on data for eight abundant species. Models generally perform more poorly at low numbers of training
points and gain performance as more training points are offered. Kernel density estimates (KDE), NumBag, Dou-
bleBag, and regularized Gaussian tended to approach a performance plateau at large samples sizes while uLSIF
shows inconsistent behavior, occasionally outperforming all other models at all sample sizes (e.g., Geranium syl-
vaticum), but more commonly showing superior performance only at small sample sizes (e.g., Anthyllis vulneraria).

(Fig. 4. Continued)

 ❖ www.esajournals.org 12 September 2018 ❖ Volume 9(9) ❖ Article e02373

DRAKE AND RICHARDS



models based on density ratio estimation to be
superior to models based on density estimation
itself (Sugiyama et al. 2013). The empirical analy-
sis reported here shows this not to be generally
true, however, as uLSIF exhibited performance
inferior to plug-and-play methods. Except for
MaxEnt (Elith et al. 2011), to our knowledge,
density ratio estimation has not previously been
used for species distribution modeling. What,
then, explains the superior performance of Max-
Ent compared with uLSIF? Possibly it is due to
the fitting criterion, which MaxEnt stipulates to
be the Kullback-Leibler divergence between bf1
and bf . In contrast, plug-and-play methods pro-
pose no such constraint. Thus, for instance, in the
current study the alternative component distri-
butions are chosen to meet different criteria
applying to different plausible conditions that
might restrict the performance of a simple esti-
mator (like the classical Gaussian). As it turns
out, some of these options degrade performance
(i.e., robust Gaussian components), while others
improve it (i.e., KDE and regularized Gaussian
components). The set of possible estimators for
the component densities f1 and f and the rationale
for choosing among them is an important prob-
lem for further study. For now, we recommend
the plug-and-play approach with KDE or regu-
larized Gaussian components, or MaxEnt when
computing resources are limited. In contrast,
when the size of the data is small or when com-
puting resources are not a concern, NumBag and
DoubleBag are our methods of choice.
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